Security Audit of the Secure List Server
Part I

Guus Sliepen <guus@sliepen.org>

May 24, 2013

Abstract

The subject of this audit is Mailman 2.1.11-2 with the pgp-smime patch of 2008-07-03. The
list of known, open issues was reviewed. The code provided in the patch was also reviewed.
A test setup was created and the administration and usage of secure lists were reviewed. A
number of issues were found with this version of the Secure List Server. Although the bare
functionality of a secure list server is implemented, there is still some way to go before it can
be called robust and fool-proof. The developers should work first on providing strict integrity
and confidentiality enforcement.

1 Introduction

1.1 Subject of the security audit

The subject of this security audit is the Secure List Server (SLS), which consists of the Mailman
mailing list server augmented with the pgp-smime patch which allows Mailman to handle emails
which are signed and/or encrypted with OpenPGP or S/MIME in a meaningful way.

Before looking at the cryptographic functionality offered by SLS, I will describe the basic function-
ality of a mailing list manager (hereafter called a list manager). A mailing list manager manages
zero or more mailing lists (hereafter called a list). Each list can have zero or more subscribers.
Both lists and subscribers are associated with email addresses. If a subscriber of a certain list
sends an email to the list’s address (herafter called posting), the list manager will forward a copy
of that email to all the other subscribers. In some cases, a person not subscribed to a particular
list (a non-subscriber), is allowed to post to that list, in other cases it is not allowed. The list
manager generally allows people to subscribe themselves to the lists of their choice. A list manager
can hold messages for moderation by a list moderator. A list manager can maintain archives of
the emails sent to the list.

The original Mailman is not aware of OpenPGP or S/MIME signatures or encryption, and will
forward messages that are signed and/or encrypted verbatim, without checking signatures or
performing decryption. The pgp-smime patch brings awareness of signatures and encryption to
Mailman. If SLS knows the public keys of the subscribers for a list, it can verify the OpenPGP
or S/MIME signatures on incoming emails, and reject emails without proper signatures, if so
configured. If a list is associated with a given public/private keypair, SLS can optionally sign
outgoing emails with the list key, allowing subscribers to verify that the emails they receive really
were sent via the list manager. If a subscriber posts a message encrypted with the list’s public key,
SLS can decrypt the message and optionally re-encrypt it with the receivers’ public keys before
forwarding the message, allowing messages to be exchanged in confidentiality within the group of
subscribers.



It is important to realise that subscribers have certain expectations from secure lists, and that not
all of those expectations can simply be met by throwing some cryptography at the list manager.
The scope of this security audit therefore does not only include the use of the GNU Privacy Guard
(GnuPG) and OpenSSL in the pgp-smime patch, but the whole functionality SLS offers to the list
administrators and subscribers.

1.2 Test setup

To test the functionality and behaviour of SLS, the following test setup was created:

e Asus EeePC 701 with 2 GB RAM and 20 GB storage

e Debian unstable (last update on 2008-07-21)

e Mailman 2.1.11-2 patched with mailman-2.1.11-pgp-smime_2008-07-03.patch
e Postfix 2.5.2-2 mail server

e Mutt 1.5.18-3 mail client

e Lighttpd 1.4.19-4 light-weight web server

o GnuPG 1.4.9-2

e OpenSSL 0.9.8¢g-11

e Python-GnuPGinterface 0.3.2-9

Prior to this setup, an almost identical one was used, except that mailman-2.1.11-pgp-smime_2008-06-25.patch
was used. That particular version of the patch lacked the ability to encrypt or sign outgoing mes-

sages, and would always send messages in plaintext, even on lists where encryption was mandatory.

This gross oversight was fixed in the next patch, but could have been prevented by having a test

suite that the developers can use to determine the correct functioning of SLS before new patches

are released.

2 Review of TODO list

SLS contains a list of open items in the file TODO.PGP-SMIME. I have reviewed this list, and have
the following remarks for some of the items:

0006 Using the web roster, any subscriber can view any subscribers’ preferences, including public
key. And maybe even change.
The web roster should normally only be accessible by the list administrator, not by individual
subscribers.

0009 Harden this thing: re-encrypt immediately after decrypting.
The best way to ensure confidential information is not leaked is indeed to keep the time the
decrypted information is present to a minimum. Although normally memory that is freed
by an application is discarded or reused for other purposes, it is possible that temporarily
used memory is stored more permanently, outside the control of the application. If the
list manager runs on a system with swap enabled, it is possible that parts of the memory
are copied to disk, where it can remain indefinetely. This risk can be avoided by using
the mlock() call to prevent memory from being swapped out to disk. The list manager
should also immediately overwrite sensitive information with zeroes or random bits. The list



0012

0013

0015

0024

0030

0031

0033

0036

manager should also avoid writing decrypted information to temporary files, as it is even
harder to manage sensitive information on disk than in memory.

When creating a list, make sure the listadmin password is not sent via plain email.

A chain is only as strong as its weakest link. For lists that require confidentiality, and hence
only accepts and forwards encrypted emails, the management of that list should also go via
an encrypted channel, either via encrypted emails from the list admin to the list manager,
or via an SSL encrypted connection to the web interface of the list manager. It would also
be better to use signed emails or client certificates than to use passwords.

Perhaps we should suggest an empty passphrase for list keys in our interface.

Passphrases only improve the security of key material for human interaction. Perhaps it is
better to require empty passphrases for list keys, so as not to give the false impression that
a passphrase would enhance security.

We should refuse to create an html list archive for secure lists.

It should be possible to create archives of secure lists while still preserving the intended
integrity and/or confidentiality of the list. Lists that just require integrity can maintain an
archive provided that the signature of archived emails is kept. Lists that require confiden-
tiality can either store the incoming emails in the archive without decrypting them, and then
re-encrypt them to another subscriber when they request old emails from the archive. An-
other option is to decrypt incoming emails, and store a copy in the archive that is encrypted
to all current subscribers. Both options have their own advantages and disadvantages, per-
haps this could be a configurable setting.

If a post is properly signed, accept it, no matter wether the From-adress is subscribed and no
matter the sender moderation policy.

Although that is possible and perhaps desirable, one should remember that only the body of
an email is signed and/or encrypted, but not the headers. If a subscriber is allowed to change
the From header at will, he can try to impersonate another person when sending an email
to the list. It is best to restrict the contents of the From header to the email address(es)
listed in the subscriber’s public key.

Deal with subscribers without public keys.

The best way to deal with this issue is not to allow someone to subscribe without providing
a public key for lists that require one. For subscription via email, require that the sub-
scription request is properly signed, and automatically store the public key along with other
subscriber’s details. For subscription via the web, require that the subscriber uploads his
public key in the same form as the subscription request. In both cases, require that the
subscriber’s response to the verification email is also signed.

When bouncing e-mail because list policy was violated [...] only bounce the headers, not the
complete e-mail message.

Indeed, by allowing the body of an email to be included in the bounce, an attacker can
send emails containing viruses or other unwanted payloads to a list, and can forge the From
header so the bounce will be sent to a victim of choosing. This item was marked as difficult
to implement, wishlist severity. I cannot believe it would be difficult to strip the body from
an email, and preventing SLS from being used as a spam or virus redistributer should be
high priority.

All defaults should be strict.
Indeed, for SLS the defaults must be as strict as possible to prevent a list being accidentally
less secure that intended.

When re-encrypting a signed message, the original signature gets lost: this makes it possible
for one list member to pose as another list member. In theory, it should be possible to keep
the original signature after decryption.



Indeed, since GnuPG has no option to decrypt a message without removing its signature, SLS
currently cannot preserve the original signature, but rather adds its own when forwarding
an email. One should ask (and perhaps sponsor) the GnuPG developers to implement this
missing feature. In the mean time, one should not allow messages to be posted where the
From header does not match one of the email addresses associated with the public key used
to sign the email (see also item 0024 above).

0050 Make sure posts get encrypted and signed if needed.
Although this item was marked as being S/MIME specific, this statement also applies to
GnuPG of course. Perhaps it is best determine whether an incoming email as signed or
encrypted, and mark this somewhere in its headers, such that the marking does not get
removed while the email is being processed by SLS. When sending outgoing emails, preferably
right before the email is sent to the SMTP server, it should be verified that if the message
is marked signed, the outgoing email is indeed signed. The same goes for encryption.

0060 emailfO0f by Guus Sliepen deals with PGP. Study its source.
The most relevant feature in emailfO0f for SLS is that by sending it a single signed email, it
can setup an association between the public key and an identity, and automatically retrieves
and stores the public key for further communication. See also the suggestions in item 0030.

3 Code audit

I have reviewed the PGP and S/MIME related source code files of the patched Mailman to some
extent (a line-by-line analysis of the whole Mailman code base is not possible in the scope of this
security audit). The patch makes an effort to put most PGP and S/MIME related functionality
into their own Python classes, most notably in GPGUtils.py and SMIMEUtils.py. These classes
are well structured, and contain clearly defined functions to process the various cryptography-
related aspects of messages. However, the source code files that handle reception and sending of
emails, most notably Handlers/Moderate.py and Handlers/SMTPDirect.py, contain all the glue
logic for PGP and S/MIME handling interspersed with the original mail handling functions. In
these files, the code is harder to read, and it is probable that (future) errors are more easily made.
For the code quality it would be better if the GnuPG and S/MIME related functionality in these
files were moved to their own files, and that this functionality would be called from the incoming
and outgoing email handlers by callbacks.

The following issues were found in the code:

e The GnuPGlInterface library, by default, does not use a full path when calling the gpg binary.
This can allow someone with access to environment or to a local bin directory to divert calls
to gpg to a subverted binary. SLS should override the call variable of the GnuPG object
with the full path to the gpg binary.

e SMIMEUtils.py calls openssl without a full path. See the above item.

e SMIMEUtils.py makes heavy use of temporary files. In particular, plaintext copies of mes-
sages are written to temporary files. Although the temporary files are removed directly after
use, this allows some with read access to the temporary files to obtain copies of the plain-
text. It also allows the plaintext to end up on a storage device, where it may stay indefinitely
(removing a file normally does not actually remove the contents from disk).

e The logic of handling signatures and encryption is such that if both gpg_post_sign and
smime_post_sign are set to Force, that only emails are accepted which have both an OpenPGP
and an S/MIME signature at the same time. The same logic applies to gpg_posting allowed



4

and smime_post_encrypt for encryption, and for the other combinations of signing and en-
cryption of outgoing messages. It is clearly not desirable behaviour. If a list administrator
enables both OpenPGP and S/MIME, he means that people can use either OpenPGP or
S/MIME. It also makes perfect sense to allow some subscribers of a list to use OpenPGP,
and the others S/MIME, as it’s not the technology that is used that is important, but rather
just the integrity and confidentiality guarantees they provide.

Poor error handling in GPGUtils.py. When calling gpg, only the statement p.wait() is
surrounded by a try..catch block. However, when gpg is called with wrong arguments,
it will terminate before accepting input from stdin, resulting in an unhandled Broken Pipe
exception.

Usage audit

SLS was set up from scratch together with a mail server (Postfix) and a web server (Lighttpd). A
test list was created and subscribtions were made from various email addresses. Various settings
for the test list have been tried and in each case plaintext, signed, encrypted and signed+encrypted
emails have been sent to the test list, from both subscriber and non-subscriber addresses. The
following issues were found:

The list administrator interface is not very clear. For example, one of the options is: “Should
messages be GPG signed? Yes means: hold for approval. (No, Yes, Force)”. It is unclear
from just this question what the difference between Yes and Force is. Will Force add a
signature if there is none present, or twist the subscriber’s arm until he does? If I answer
Yes, does that mean that signed messaged are held for approval? It takes a while before
one guesses the true meaning of the choices. It is better to rephrase the question to “Allow
unsigned messages? (Yes, Hold, No)”, or to elaborate the choices in the original question:
“No, Yes (hold unsigned), Force (drop unsigned)”. The sames goes for all the other three-
choice option.

OpenPGP and S/MIME are treated as two completely different things. One can configure
a list to require OpenPGP signatures, but S/MIME encryption. This does not make much
sense. It would be better if the options were made technology agnostic: “Require emails to
be signed?”, “Require emails to be encrypted?”, etcetera, and to enable OpenPGP and/or
S/MIME based on whether the relevant keys were provided.

Although one can easily upload OpenPGP keys via the website, there is no way to upload
an S/MIME list key. With the current patch, the list administrator somehow has to put the
S/MIME list key in /var/lib/mailman on server running SLS.

SLS requires the list administrator to generate a public/private keypair and to upload both
to the list manager. Uploading via unencrypted HTTP to the web interface severily com-
promises the secrecy of the private key. Although this problem can be solved by enforcing
SSL for the web administration interface, it might be even better to allow the list manager
to generate public/private keypairs for lists. This simplifies setting up new lists and obviates
the need for the private key to be moved around.

SLS does not allow minimum requirements set for key sizes, cipher and digest algorithms.
Instead, the defaults of GnuPG and OpenSSL are used, which may be quite liberal. A list
administrator might want to enforce stricter security to limit the chances of compromising
communication on a secure list.

Once someone is subscribed to the list (possibly only after getting permission from the list
administrator), he can log in to the list manager web interface with just a password and



change his settings. This also allows him to change his public key. Since a public key is
a much stronger credential of someones identity than just an email address, and since it is
much easier to guess a password than to crack a key, it should not be allowed to change the
public key without explicit permission from the list administrator.

e Sending unencrypted emails to a list for which encryption is mandatory always results in an
“Encryption required” email being sent to the email address mentioned in the From header
of the original email. The complete original message is attached to the response. This allows
an attacker to use SLS as an anonimising remailer for spam or viruses.

e If an encrypted message sent to a list is for some reason automatically discarded, the auto-
discard notification is sent to the list administrator, but it contains an decrypted copy of the
original message. This breaches the confidentiality of the original message. An encrypted
message should either be forwarded encrypted or not at all.

e SLS does not check the serial number or timestamps of a signature. Therefore it is possible
to resend old messages to the list, and an attacker who can get hold of one message sent
to the list does not need to be able to decrypt it or alter its signature to cause a denial of
service (DoS) attack by sending this same message to the list over and over again, causing
SLS to forward the message to the other subscribers over and over again.

e Emails with a valid signature of a known subscriber are accepted regardless of whether the
address in the From header matches one of the email addresses associated with the key.
Since the original signature is removed before the mail is sent to the other subscribers, this
allows one subscriber to impersonate another subscriber or even an outsider.

e SLS can be misused as a so-called oracle. It does not care about the contents of a message,
but will happily decrypt and sign messages sent to it and forward them. A subscriber can
get a signature with the list key on any message it wants, just by sending that message to
the list. A subscriber can also resend to the list any old message that was sent encrypted
to that list, and receive a copy that has been decrypted and re-encrypted for the subscriber.
Care must be taken that a list key is unique and used only for that list, and that timestamps
on signatures are verified to prevent new subscribers to be able to decrypt old emails sent
to the list, if that is undesirable.

5 Priority of security-related issues

Most important is to implement a test suite so the developers can check for regressions before
publishing new versions of SLS. The administrators who install SLS will probably not check
every aspect of SLS before upgrading their installation, so it would be best for the developers to
prevent the situation from the patch of 2008-06-25 from happening again. The test suite does not
necessarily have to be a fully automated set of scripts that perform various checks, it can be a
checklist that a developer manually works through to check the functionality of SLS, as long as it
works correctly.

Second most important is to make sure that when a list is set up for integrity and/or confidentiality,
these aspects are always enforced. This means that an encrypted message sent to a list never leaves
SLS unencrypted. I also strongly recommend to try to keep the original signature of messages sent
to a list, but in case of OpenPGP this might not be possible without support from the GnuPG
developers.

Third most important is the simplicity and consistency of the user interface. The harder it is
for administrators or subscribers it is to understand certain settings, the more mistakes will be
made. The more hoops one has to jump through to upload a key, the more mistakes will be



made. Mistakes can cause SLS to be configured with lesser security than intended, and might
inadvertently compromise communications.

Then there are a number of issues dealing with aspects of SLS that are not as secure as OpenPGP
and S/MIME are, like the rather simple password protected access to the list settings. Again, a
chain is only as strong as its weakest link, so try to remove or strengthen any link weaker than
the OpenPGP and S/MIME part.

The source code revealed some possibly insecure uses of pathnames and temporary files, but these
issues are less important if SLS is run on a reasonably secured server.

6 Conclusion

Although the bare functionality of a secure list server is implemented, there is still some way to
go before SLS can be called robust and fool-proof. The developers should work first on providing
strict integrity and confidentiality enforcement.



