
software-wishlist.pod

Page 1

NAME
software-wishlist - wishes (and requirements) by TiU LIS Unix for supported software

INTRODUCTION
The intended audience for this document is software developers, as well as
 people intermediating
with software developers.

This document lists wishes and requirements for software, for it to be
 installed on TiU LIS Unix
managed systems. For specific
 software installations, requirements are decided upon on a case by
case basis.
 However, this list will be used as a guideline.

This list applies to all software running on LIS Unix managed systems: the
 OS vendor supplied kernel,
Oracle product installations, PHP and Perl
 webapplications, in-house developed small scripts, and all
other stuff.

The list is sorted: the first wish is a hard requirement always, and is "easy"
 to fulfill. The last wish
would make LIS Unix very happy, but is quite often
 impossible to fulfill. Of course, the more items
your software adheres to, the
 higher the service level LIS Unix can guarantee, the happier everybody
will be.

This document is published at:
http://non-gnu.uvt.nl/pub/uvt-unix-doc/software-wishlist/software-wishlist .

WISHES AND REQUIREMENTS
1. maintained

The software needs to be maintained. Popular Unix Operating Systems change,
 expectations of
SysAdmins and users change, new ways to attack and abuse
 software get found and used: the
environment of each software package changes,
 so all software packages will have to change too.
For newly fixed software
 versions and releases, a agreed upon channel should be established to LIS
Unix,
 so that upgrades can get carried out in time.

2. version numbers
Each version of the software package has a number by which it can be easily
 identified. This helps
when referring to specific installations: it should be
 possible to make it clear exactly about which
software one is talking. This
 could simply be the date it's released, written as YYYYMMDD. The
version
 number could be implicit, e.g. when LIS Unix has access to the version control
 system used to
develop the software a thing like an SVN revision number could
 be used.

In case the software is offered in a filearchive (e.g. .zip, .tar.gz, .txz),
 the filearchive must be published
on a secured location, e.g. a httpS URL or
 uploaded to an scp-reachable location (one option is to use
https://send.uvt.nl). The archive should be named name-version.extension, and should extract to a
directory named name-version/ . E.g. hello-1.2.tar.gz contains the file
 hello-1.2/INSTALL .

3. readonly install
If the software writes to specific files (state data), these files should be
 under a common root in the
filesystem, separate from the installation root.
 The software could write to:

 /var/lib/foobar/*

While other installed files are typically:

 /usr/bin/foobar
 /usr/share/foobar/*

It should be possible to install the software in such a way that the user
 ID typically running the
software has no way to change the program itself.

software-wishlist.pod

Page 2

4. configuration
As with state data, configuration data should be kept in a specific directory.
 (Of course, all data the
application maintainer might want to change, should be
 kept in run-time configuration files.) This is
needed to separate Unix users
 having write access to configuration data, from users having write
access to
 the software installation.

Preferably, all configuration should be stored in human-editable text files.
 If the application needs any
passwords (or other secret data like ssh private
 keys), it should be possible to store these outside the
main configuration
 files.

5. syslog
Logging should go to syslog. Use the libc syslog(3) call, or use a wrapper
 supplied by the scripting
language you use. (Python, Perl and PHP all have
 interfaces for this.) If you'd like to be able to write
logging to stuff to
 STDERR, you might want to choose to wrap you application in logger(1). It
 should
be possible to specify which syslog "facility" identifier is used.

This is needed to efficiently deal with logrotates, to flexibly decide which
 logdata should go where
(possibly to a separate loghost, for example), and to
 be able to plug the software in the LIS Unix
maintained logfile monitoring
 system. Using this monitoring framework, LIS Unix can e.g. redirect
loggged
 error conditions to destinations supplied by the application maintainer.

6. email
If the software sends out emails, the used envelope From-adress as well as
 header From-adress
should be configurable. The software should use sendmail(1)
 to send mail. If this is not possible, the
software should talk to
 localhost:smtp using the SMTP protocol.

7. cronjobs
If the software requires cronjobs to be run, it should not assume the
 installing user runs "crontab -e". It
should be possible to use
 /etc/cron.d/appname, as supported by the cron(8) that is shipped with

popular GNU/Linux distributions.

8. daemon
Every Unix daemon process is supposed to "deamonize" itself properly,
 preferably using the libc
daemon(3) call. If your programming environment
 does not support this libc call, you'll need to do a
number of things
 manually. You can find a description in
http://www.enderunix.org/documents/eng/daemon.php .

9. IPv6
Every application that uses the network should work with IPv6.
 Applications must not fail if IPv6 is
present.

10. INSTALL
The software should come with usable installations instructions (typically in a
 file named INSTALL).
(Some software doesn't need such a file: if a usable
 Makefile or ./configure is shipped, installation can
be straightforward. See
 below.)

11. makefiles
The software should come with Makefiles, which act in a sane way when invoked
 as "make install".
Caspar makes it easy to add
 support for this to your software. (For larger projects, you might consider
using Automake.)

See the GNU coding standards
 for a description of what a sane "make install" should do.

12. stow-able
It should be possible to install under a prefix of ones choice. An example of
 an installation system that
does this out of the box is autoconf.

software-wishlist.pod

Page 3

13. FHS
A default install should conform to the FHS.

14. [dropped]
[this section is dropped (was: LSB).]

15. packageable
The software's build and installation system should have support for DESTDIR.
 An example of an
installation system that does this out of the box is the GNU
 Autotools.

16. ChangeLog
The software should ship with a NEWS file, or ChangeLog, listing the major
 changes between
releases.

17. packaged
The software is packaged in packages that conform to the Debian Policy,
 so that it integrates nicely
with the Debian GNU/Linux Operating System.

18. Debian APT repository
The aforementioned packages are shipped using a Debian APT repository, e.g.
 either the one running
at https://non-gnu.uvt.nl/, or the one running at https://non-free.uvt.nl/.

19. Debian main
The aforementioned APT repository is the Debian main APT repository.
 This is the ideal situation.

SEE ALSO
The wishlist for Web Applications (also available from https://tiu.nu/webapp-wishlist)
 these are
additional requirements specific to websites and other web-based
 applications.

The GNU coding standards . The GNU hello
 software package at http://www.gnu.org/software/hello/ :
an example of best
 practices. The Debian package of GNU Hello .

The Debian Upstream Guide , explaining
 how to make live easy for Debian packagers when writing
your software.

COPYRIGHT
Copyright (C) 2006, 2015, 2016, 2017 Tilburg University

AUTHORS
Joost van Baal <joostvb@uvt.nl>

Wessel Dankers <wsl@uvt.nl>

VERSION
 $Id: software-wishlist.pod 46445 2017-03-27 09:21:13Z joostvb $
 $URL:
https://svn.uvt.nl/its-id/trunk/sources/uvt-unix-doc/software-wishlist/soft
ware-wishlist.pod $

